Table 20. Least square means for percentage wilted and defoliated plants in a Verticillium infested soil for entries in the 2016 RBTN trial conducted at Halfway, TX. (Cooperator:Jane Dever)

	24-Aug Wilt ${ }^{1}$	$\begin{aligned} & \text { 1-Sep } \\ & \text { Wilt }^{1} \end{aligned}$	Defoliation ${ }^{2}$
Cultivar	\%	\%	\%
Ark 0812-87ne	1.7	1.9	6.2
SG 105 CK	1.7	4.4	17.9
NM 13G2019	1.7	2.3	2.1
DP 493 CK	2.5	1.9	5.0
MS 0043-28-1	3.1	5.2	26.6
Ark 0822-48	3.2	3.9	11.7
PD09046	4.1	9.7	16.6
TAM11L-24	4.8	9.3	19.6
AU82074	4.9	8.3	22.0
GA 2012141	5.4	9.8	22.5
TAM13Q-18	5.5	4.9	16.7
GA 2011113	5.5	5.8	26.6
MD 16-1	5.8	11.6	39.5
UA 222 CK	5.8	5.5	15.0
DP 393 CK	6.3	5.1	39.1
MD 16-2	6.8	9.1	37.4
Ark 0819-89	9.4	6.9	22.9
Ark 0824-89	10.1	7.0	27.0
NM 13G1029	10.5	7.9	12.5
PD07040	10.7	11.1	32.0
PD09084	11.1	14.7	33.7
Ark 0818-23	11.4	7.3	14.2
GA 2012082	13.6	9.9	17.9
FM 958 CK	14.5	11.7	26.2
PD08028	15.2	18.9	43.7
AU77082	18.1	12.0	32.4
GA 2012050	21.5	24.4	30.8
MS 0152-3-11	21.7	20.2	33.7
Mean	8.5	9.0	23.3
MSD (.05)	12.8	16.2	33.8

Values in bold are not significantly different ($\mathrm{P}=0.05$) using WallerDuncan k-ratio t-test. MSD=Minimum Significant Difference ($\mathrm{P}=0.05$) between any two means within a column using Waller-Duncan k-ratio ttest.
${ }^{1}$ Percentage Verticillium wilted plants $=$ (number of wilted plants/total number of plants) $\times 100$ witihin a 27 ft plot. Test planted May 24, number of wilted plants recorded August 24 and September 1.
${ }^{2}$ Each plot was rated on a scale of 0 to 3 at 10 different sites within a plot, where $0=$ no defoliation, $1=1-33 \%$ defoliation, $2=34-66 \%$ defoliation, and $3=67-100 \%$ defoliation. Ratings were then converted into $\%$ defoliation by taking the midpoint of a rating such that rating $0=$ $0,1=16.5,2=49.5$, and $3=83.5$. Converted values from each plot were averaged to obtain the $\%$ defoliation in a plot.

